The End of the Movie: SF State's 2024 Putnam Competition Team, A Retrospective

From: Zack M Davis <zmd@sfsu.edu>
Sent: Sunday, January 12, 2025 11:52 AM
To: math_majors@lists.sfsu.edu <math_majors@lists.sfsu.edu>, math_graduate@lists.sfsu.edu <math_graduate@lists.sfsu.edu>, math_lecturers@lists.sfsu.edu <math_lecturers@lists.sfsu.edu>, math_tenure@lists.sfsu.edu <math_tenure@lists.sfsu.edu>
Subject: the end of the movie: SF State’s 2024 Putnam Competition team, a retrospective

Because life is a gradual series of revelations
That occur over a period of time
It’s not some carefully crafted story
It’s a mess, and we’re all gonna die

If you saw a movie that was like real life
You’d be like, “What the hell was that movie about?
It was really all over the place.”
Life doesn’t make narrative sense

—“The End of the Movie”, Crazy Ex-Girlfriend

Every Hollywood underdog story starts with a dream. The scrawny working-class kid who wants to play football for Notre Dame. The charismatic teacher at a majority-Latino school in East L.A. who inspires his class to ace the AP Calculus exam. The debate team at a historically black college that unseats the reigning national champions. Hollywood tells us that if you work hard and believe in yourself, you can defy all expectations and achieve your dream.

Hollywood preys on the philosophically unsophisticated. Chebyshev’s inequality states that the probability that a random variable deviates from its mean by more than k standard deviations is no more than 1/k². Well-calibrated expectations already take into account how hard you’ll work and how much you’ll believe in yourself: underdogs mostly lose by definition.

Accordingly, this story starts with a correspondingly humble dream: the not-a-kid-anymore returning to SFSU after a long absence to finish up his math degree, who wants to get a nonzero score in the famous William Lowell Putnam Mathematical Competition®. (It’s not quite as humble as it sounds: the median score in the famously brutal elite competition is often zero out of 120, although last year the median was nine.)

The first step on the road to a nonzero score was being able to compete at all: SF State had no immediate history of participating in the event, in contrast to other schools that devote significant resources to it. (E.g., at Carnegie Mellon, they have a for-credit 3-unit Putnam seminar that meets six days a week.) At SFSU in 2012, I had asked one of my professors about registering for the Putnam, and nothing came of it. This time, a more proactive approach was called for. After reaching out to the chair and several professors who had reasons to decline the role (“I’m not a fan of the Putnam”, “I have negative time this semester”, “You should ask one of the smart professors”), Prof. Arek Goetz agreed to serve as local supervisor.

A preparation session #1 to discuss the solutions to problems from the 2010 competition was scheduled and aggressively advertised on the math-majors mailing list. (That is, “aggressively” in terms of the rhetoric used, not frequency of posts.) Despite some interest expressed in email, no non-organizer participants showed up, and my flailing attempts at some of the 2010 problems mostly hadn’t gotten very far … but I had at least intuited the correct answer to B2, if not the proof. (We are asked about the smallest possible side of a triangle with integer coordinates; the obvious guess is 3, from the smallest Pythagorean triple 3–4–5; then we “just” have to rule out possible side lengths of 1 and 2.) The dream wasn’t dead yet.

To keep the dream alive, recruitment efforts were stepped up. When I happened to overhear a professor in the department lounge rave about a student citing a theorem he didn’t know on a “Calculus III” homework assignment, I made sure to get the student’s name for a group email to potential competitors. A When2Meet scheduling poll sent to the group was used to determine the time of prep session #2, which was advertised on the department mailing list with a promise of free donuts (which the department generously offered to reïmburse).

Session #2 went well—four participants came, and Prof. Goetz made an appearance. I don’t think we made much progress understanding the 2011 solutions in the hour before we had to yield TH 935 to the Ph.D. application group, but that wasn’t important. We had four people. This was really happening!

As the semester wore on, the group kept in touch on our training progress by email, and ended up holding three more in-person sessions as schedules permitted (mean number of attendees: 1.67). Gelca and Andreescu’s Putnam and Beyond was a bountiful source of practice problems in addition to previous competitions.

Finally, it was Saturday 7 December. Gameday—exam day, whatever. Three competitors (including one who hadn’t been to any of the previous prep sessions), gathered in the Blakeslee room at the very top of Thornton Hall to meet our destiny. The Putnam is administered in two sessions: three hours in the morning (problems identified as A1 through A6 in roughly increasing difficulty), and three hours in the afternoon (problems B1 through B6).

Destiny was not kind in the problem selection for the “A” session.

A1 was number theory, which I don’t know (and did not, unfortunately, learn from scratch this semester just for the Putnam).

I briefly had some hope for B2, which asked for which real polynomials p is there a real polynomial q such that p(p(x)) − x = (p(x) − x)²q(x). If I expanded the equation to Σj=0n ajk=0n ak xk)j − x = (Σj=0n aj xj − x)² Σj=1n bj xj, and applied the multinomial theorem … it produced a lot of impressive Σ–Π index notation, but didn’t obviously go anywhere towards solving the problem.

A3 was combinatorics. Concerning the set S of bijections T from {1, 2, 3} × {1, 2, …, 2024} to {1, 2, …, 6072} such that T(1, j) < T(2, j) < T(3, j) and T(i, j) < T(i, j+1), was there an a and c in {1, 2, 3} and b and d in {1, 2, …, 2024} such that the fraction of elements T in S for which T(a, b) < T(c, d) is at least ⅓ and at most ⅔? I couldn’t get a good grasp on the structure of S (e.g., how many elements it has), which was a blocker to being able to say something what fraction of it fulfills some property. Clearly a lexicographic sort by the first element, or by the second element, would fulfill the inequalities, but how many other bijections were in S? When the solutions were later published, the answer turned out to involve a standard formula about Young tableaus, not something I could have realistically derived from scratch during the exam.

A4 was more number theory; I didn’t even read it. (I still haven’t read it.)

A5 asked about how to place a radius-1 disc inside a circle of radius 9 in order to minimize the probability that a chord through two uniformly random points on the circle would pass through the disk. I recognized the similarity to Bertrand’s paradox and intuited that a solution would probably be at one of the extremes, putting the disc at the center or the edge. There was obviously no hope of me proving this during the exam. (It turned out to be the center.)

A6 was a six; I didn’t read it.

I turned in pages with my thoughts on A2, A3, and A5 because it felt more dignified than handing in nothing, but those pages were clearly worth zero points. The dream was dying.

Apparently I wasn’t the only one demoralized by the “A” problems; the other competitors didn’t return for the afternoon session. Also, it turned out that we had locked ourselves out of the Blakeslee room, so the afternoon session commenced with just me in TH 935, quietly hoping for a luckier selection of “B” problems, that this whole quixotic endeavor wouldn’t all have been for nothing.

Luck seemed to deliver. On a skim, B1, B2, and B4 looked potentially tractable. B2 was geometry, and I saw an angle of attack (no pun intended) …

B2. Two convex quadrilaterals are called partners if they have three vertices in common and they can be labeled ABCD and ABCE so that E is the reflection of D across the perpendicular bisector of the diagonal AC. Is there an infinite sequence of convex quadrilaterals such that each quadrilateral is a partner of its successor and no two elements of the sequence are congruent?

I imagined rotating the figure such that AC was the vertical axis and its bisector was the horizontal axis, and tried to imagine some way to perturb D and E to get a sequence of quadrilaterals that wouldn’t be congruent (because the angles ∠CDA and ∠CEA were changing), but for which we could alternately take ABCD and ABCE so that successive shapes in the sequence would be partners. I couldn’t see a way to make it work. Then I thought, what if perturb B instead?

Yes, I began to write excitedly, there exists such a sequence. For example, in ℝ², let A := (0, −1), C := (0, 1), D := (½, ½), and E := (½, −½), and consider a sequence Bn on the unit circle strictly in quadrant II (i.e., with x < 0 and y > 0), for example, Bn := (Re exp((π - 1/n)i), Im exp((π - 1/n)i)) where ℝ² is identified with ℂ. Then consider the sequence of quadrilaterals ABnCD for odd n and ABnCE for even n, for n ∈ ℕ+. Successive quadrilaterals in the sequence are partners: the perpendicular bisector of the diagonal AC is the x-axis, and D = (½, ½) and E = (½, −½) are reflections of each other across the x-axis. No two quadrilaterals in the sequence are congruent because the angle ∠ABnC is different for each n …

Or is it? I recalled a fact from Paul Lockhart’s famous lament: somewhat counterintuitively, any triangle inscribed in a semicircle is a right triangle: ∠ABnC would be the same for all n. (The quadrilaterals would still be different, but I would have to cite some other difference to prove it.) I took a fresh piece of paper and rewrote the proof with a different choice of Bn: instead of picking a sequence of points on the unit circle, I chose a sequence on the line y = x + 1: say, Bn := (−1/(n+1), 1 − 1/(n+1)). Then I could calculate the distance AB as √(1/(n+1)² + (1 − 1/(n+1))²), observe that the angle ∠BCA was 45°, invoke the law of sines to infer that the ratio of the sine of ∠ABC to the distance AC (viz., 2) was equal to the ratio of the sine of ∠BCA (viz., √2/2) to the distance AB, and infer that ∠ABC is arcsin(√2/AB‾), and therefore that the quadrilaterals in my sequence were not congruent. Quod erat demonstrandum!

That took the majority of my time for the afternoon session; I spent the rest of it tinkering with small-n cases for B1 and failing to really get anywhere. But that didn’t matter. I had solved B2, hadn’t I? That had to be a solve, right?—maybe 8 points for less than immaculate rigor, but not zero or one.

Last year the published contest results only listed the names of top 250 individuals, top 10 teams, and top 3 teams by MAA section (“Golden Section: Stanford University; University of California, Berkeley; University of California, Davis”), but I fantasized about looking up who I should write to at the MAA to beg them to just publish the full team scores. Who was privacy helping? People who go to R2 universities already know that we’re stupid. Wouldn’t it be kinder to at least let us appear at the bottom of the list, rather than pretending we didn’t exist at all? All weekend, in the movie of my life in my head, I could hear the sports announcer character (perhaps portrayed by J. K. Simmons) crowing: Gators on the board! Gators on the board!

All weekend and until the embargo period ended on 10 December and people began discussing the answers online, reminding me that real life isn’t a movie.

I did not write to the MAA.

The Gators were not on the board.

I did not solve B2.

The answer is No, there is no such sequence of quadrilaterals. The Putnam archive solutions and a thread on the Art of Problem Solving forums explain how to prove it.

As for my “proof”, well, the problem statement said that partner quadrilaterals have three vertices in common. In my sequence, successive elements ABnCD and ABn+1CE have two vertices in common, A and C.

This isn’t a fixable flaw. If you have the reading comprehension to understand the problem statement, the whole approach just never made any sense to begin with. If it made sense to me while I was writing it, well—what’s that phrase mathematicians like to use? Modus tollens.

You could say that there’s always next year—but there isn’t, for me. Only students without an undergraduate degree are eligible to take the Putnam, and I’m graduating next semester. (In theory, I could delay it and come back in Fall 2025, but I’m already graduating fifteen years late, and no humble dream is worth making it fifteen and a half.)

I keep wanting to believe that this isn’t the end of the movie. Maybe this year’s effort was just the first scene. Maybe someone reading this mailing list post will hear the call to excellence and assemble a team next year that will score a point—not out of slavish devotion to Putnam competition itself, but to what it represents, that there is a skill of talking precisely about precise things that’s worth mastering—that can be mastered by someone trying to master it, which mastery can be measured by a wide-ranging test with a high ceiling and not just dutiful completion of course requirements.

Maybe then this won’t all have been for nothing.

Recruitment Advertisements for the 2024 Putnam Competition at San Francisco State University

From: Zack M Davis <zmd@sfsu.edu>
Sent: Wednesday, September 11, 2024 5:02 PM
To: math_majors@lists.sfsu.edu <math_majors@lists.sfsu.edu>
Subject: Putnam prep session for eternal mathematical glory, 4 p.m. Thu 19 September

One must make a distinction however: when dragged into prominence by half-poets, the result is not poetry, nor till the poets among us can be “literalists of the imagination”—above insolence and triviality and can present for inspection “imaginary gardens with real toads in them”, shall we have it. In the meantime, if you demand on the one hand the raw material of poetry in all its rawness, and that which is on the other hand genuine, then you are interested in poetry.

—Marianne Moore

The William Lowell Putnam Mathematical Competition, the renowned annual math examination for undergraduates with cash prizes for top performers, is to be held on Saturday, 7 December 2024. Registration details will be available soon, but for now, potential competitors are invited to come to an initial preparatory/training session at 4 p.m. on Thursday, September 19th in the math department conference room TH 935.

To get the most out of it, try struggling with some of the problems from the 2010 competition beforehand: we’ll discuss solutions and strategies together at the meeting. (The problems are numbered A1–A6 and B1–B6, corresponding to the morning and afternoon sessions of the competition; the earlier-numbered problems within each are supposed to be easier.) If you can’t make this time but are interested in the endeavor, I want to hear from you: email me at zmd@sfsu.edu.

“FREQUENTLY” ASKED QUESTIONS

Q: Did you say “cash prizes”? I’m pretty good at math: I got an “A” in MATH 228. Should I participate in hopes of winning?

A: No. No one who goes to SF State is going to win any prizes. The Putnam is an elite competition designed to test the abilities of the finest young mathematical minds in the world. The graders are notoriously stingy about awarding partial credit: the median score is often zero points out of 120. Last year seems to have been a bit easier: the median score was 9.1 Of the top sixteen scorers, thirteen went to MIT.

Q: Wait, this sounds awful. I’m already spending way too much of my life shuffling formulæ around just to keep up with my classes. You’re asking me to spend even more of my precious time attempting insanely difficult problems, to prepare for a six-hour exam three months from now that I have no hope of doing well on, and it wouldn’t even earn credit for my degree? Why would I do that?

A: Because it doesn’t earn credit for your degree. The Putnam isn’t an obedience test where a designated bureaucratic authority figure commands you to use a fixed set of methods to solve a fixed set of problems in exchange for a piece of paper with an “A” written on it. It’s a challenge of your creativity, breadth of knowledge, and determination—a Schelling point for those who demand the raw material of mathematics and that which is on the other hand genuine to prove to ourselves and the world what we’re capable of. If you’re afraid of what you’ll learn about yourself by trying, then don’t.

1: The Duke Research Blog reports that there were 3,857 competitors in 2023, and the official results report that 2,200 contests scored higher than 9 and 1,610 scored higher than 10.


From: Zack M Davis <zmd@sfsu.edu>
Sent: Sunday, September 29, 2024 11:17 PM
To: math_majors@lists.sfsu.edu <math_majors@lists.sfsu.edu>
Subject: Putnam prep session #2 for eternal mathematical glory … and donuts, 2 p.m. Fri 4 October

“Hey, Goofusia,” said Gallantina. “Did you see this post on the math_majors list? Someone’s trying to organize a team for the Putnam competition—here, at SFSU! There’s going to be a prep session in Thornton 935 on Friday at 2 p.m. The organizer sounds really desperate—there should be free donuts. Want to come?”

Fraternal twins, the sisters looked so much alike that strangers who didn’t know them often asked if they were identical. People who knew them for any length of time never asked.

Goofusia grimaced. “Oh, God, is that that super-hard math competition that guys from MIT win every year, where the median score is zero?”

“Actually, someone not from MIT won as recently as 2018, and last year the median score was nine. But yes.”

“Uh-huh. What school was the 2018 winner from?”

“Um, Harvard.”

“I’ll pass. You should, too.”

“C’mon, it’ll be fun!”

“Gallantina, you don’t know what fun is. You’re so caught up in your delusional self-image of pro-sociality that you can’t even notice what you actually enjoy.” Goofusia spoke with a firm emphasis and cadence, “I, am learning math, in order to get grades, in order to get a degree, in order to get a job. So is everyone else in our major. So are you. That’s the only possible reason—the only human reason. You just can’t admit it to yourself—”

That’s not true!

“—and you’re so fanatically devoted to maintaining your false self-image as some intrinsically motivated student of the cosmos that you’re willing to torture yourself with more schoolwork that doesn’t even benefit you. You are not going to score points on the Putnam—”

“I might!” said Gallantina steadfastly, suddenly turning away from three walls of the room to face the remaining one and looking past Goofusia as if to speak to someone else. “With dedication and practice, and with the help of all the lifelong friends I’ll make in TH 935 at 2 p.m. this Friday October fourth!”

“Spare me. What does prepping for an impossible exam even look like?”

“Well, the idea is that before the meeting, I and others will prepare at home by trying problems from the 2011 competition with however much time we choose to spare for the task, and then at the meeting, we’ll compare answers and discuss the published solutions.

“If any of you losers even come up with any answers to compare.”

“We might! I’ve already made some partial progress on the first problem.”

“You don’t have to tell m—” Goofusia tried to say, but Gallantina had already begun to read:

A1. Define a growing spiral in the plane to be a sequence of points with integer coordinates P0 = (0, 0), P1, …, Pn such that n ≥ 2 and:
• the directed line segments P0–P1, P1–P2, …, P(n−1)–Pn are in the successive coordinate directions east (for P0–P1), north, west, south, east, etc.;
• the lengths of these line segments are positive and strictly increasing.

How many of the points (x, y) with integer coordinates 0 ≤ x ≤ 2011, 0 ≤ y ≤ 2011 cannot be the last point, Pn of any growing spiral?

“Two thousand and eleven?” Goofusia asked disdainfully.

“They like to work the competition year into one of the problem statements. I think it’s cute,” said Gallantina. “Anyway, I started thinking about the minimal growing spiral—one step east, two steps north, three steps west, &c. The x-coördinate steps are 1, -3, 5, -7 …, the y-coördinate steps are 2, -4, 6, -8 …, the x-coördinate net endpoints are 1, -2, 3, -4, 5 … and the y-coördinate net endpoints are 2, -2, 4, -4, … There are more possible spirals besides the minimal one, of course, but we can already see there are patterns in what endpoints are possible.”

“You’re wasting your time,” said Goofusia. “Precisely because the question asks about all possible growing spirals, you’re not going to learn anything by examining particular cases. You can immediately see that any point with an x-coördinate less than the y-coördinate will do: just take x steps east and y steps north.”

Gallantina was beaming.

“Wh—what are you smiling at?”

Gallantina nodded, still beaming.

Goofusia scowled. “Whatever,” she said, and turned to leave, then stopped. “So … what’s the answer?”

Gallantina shrugged. “We haven’t finished solving it yet. But if it turns out to be beyond us, I’m sure they’ll tell us in TH 935 at 2 p.m. this Friday October fourth.”

Goofusia shook her head. “I couldn’t possibly. I have an exam this week, and a lot of homework.”

“But you don’t specifically have anything else going on at 2 on Friday? They’re notoriously hard problems, and everyone is busy. There’d be no shame in showing up and eating a donut without having successfully solved anything at home.”

“No, I mean that’s not who I am. I’m not like you. I’m a student at SF State, not—not the cosmos!”

Goofusia left. Alone, Gallantina addressed the fourth wall again. “Is that who you are?”

Group Theory for Wellness I

(Part of Math and Wellness Month.)

Groups! A group is a set with an associative binary operation such that there exists an identity element and inverse elements! And my favorite thing about groups is that all the time that you spend thinking about groups, is time that you're not thinking about pain, betrayal, politics, or moral uncertainty!

Groups have subgroups, which you can totally guess just from the name are subsets of the group that themselves satisfy the group axioms!

The order of a finite group is its number of elements, but this is not to be confused with the order of an element of a group, which is the smallest integer such that the element raised to that power equals the identity! Both senses of "order" are indicated with vertical bars like an absolute value (|G|, |a|).

Lagrange proved that the order of a subgroup divides the order of the group of which it is a subgroup! History remains ignorant of how often Lagrange cried.

To show that a nonempty subset H of a group is in fact a subgroup, it suffices to show that if x, yH, then xy⁻¹ ∈ H.

Exercise #6 in §2.1 of Dummit and Foote Abstract Algebra (3rd ed'n) asks us to prove that if G is a commutative ("abelian") group, then the torsion subgroup {gG | |g| < ∞} is in fact a subgroup. I argue as follows: we need to show that if x and y have finite order, then so does xy⁻¹, that is, that (xy⁻¹)^n equals the identity. But (xy⁻¹)^n equals (xy⁻¹)(xy⁻¹)...(xy⁻¹), "n times"—that is, pretend n ≥ 3, and pretend that instead of "..." I wrote zero or more extra copies of "(xy⁻¹)" so that the expression has n factors. (I usually dislike it when authors use ellipsis notation, which feels so icky and informal compared to a nice Π or Σ, but let me have this one.) Because group operations are associative, we can drop the parens to get xy⁻¹ xy⁻¹ ... xy⁻¹. And because we said the group was commutative, we can reörder the factors to get xxx...y⁻¹y⁻¹y⁻¹, and then we can consolidate into powers to get x^n y^(−n)—but that's the identity if n is the least common multiple of |x| and |y|, which means that xy⁻¹ has finite order, which is what I've been trying to tell you this entire time.

The Typical Set

(Part of Math and Wellness Month.)

Say you have a biased coin that comes up Heads 80% of the time. (I like to imagine that the Heads side has a portrait of Bernoulli.) Flip it 100 times. The naïve way to report the outcome—just report the sequences of Headses and Tailses—costs 100 bits. But maybe you don't have 100 bits. What to do?

One thing to notice is that because it was a biased coin, some bit sequences are vastly more probable than others: "all Tails" has probability 0.2100 ≈ 1.268 · 10−70, whereas "all Heads" has probability 0.8100 ≈ 2.037 · 10−10, differing by a factor of sixty orders of magnitude!!

Even though "all Heads" is the uniquely most probable sequence, you'd still be pretty surprised to see it—there's only one such possible outcome, and it only happens a 2.037 · 10−10th of the time. You probably expect to get a sequence with about twenty Tails in it, and there are lots of those, even though each individual one is less probable than "all Heads."

Call the number of times we flip our Bernoulli coin N, and call the entropy of the coinflip H. (For the 80/20 biased coin, H is ⅕ lg 5 + 4/5 lg 5/4 ≈ 0.7219.)

It turns out for sufficiently large N (I know, one of those theorems, right?), almost all of the probability mass is going to live in a subset of 2NH outcomes, each of which have a probability close to 2−NH (and you'll notice that 2NH · 2−NH = 1).

April Is Separability Month

It is now April! Did you know that April is one of the months in which every compact metric space is separable?

Proof. Let it be April, and let M be a compact metric space. Because M is compact, it is totally bounded, so for all n∈ℕ, we can cover M with finitely many open balls of radius 1/n. The centers of all such balls are a countable set which we can call C. But C is dense, because an arbitrary point p∈M is a limit point of C: an ε-neighborhood of p must contain the center of one the balls in our covering of M with ε/2-balls. Thus M contains a countable dense subset.

From the Top

Theorem. The product of the additive inverse of the multiplicative identity with itself is equal to the multiplicative identity.

Proof. The sum of the multiplicative identity and its additive inverse is the additive identity: that is, the expression "1 + (–1)" is equal to the expression "0". Multiplying both of these expressions by the additive inverse of the multiplicative identity, then applying the distributivity axiom, the theorem of multiplication by the additive identity, and the law of multiplicative identity, we get:

–1(–1 + 1) = –1(0)

(–1)(–1) + (–1)1 = 0

(–1)(–1) + (–1) = 0

But then adding the multiplicative identity to both of these expressions and applying the law of additive inverses and the law of additive identity, we get:

(–1)(–1) + (–1) + 1 = 0 + 1

(–1)(–1) = 1

But that's what I've been trying to tell you this whole time.

Epiphenomenal Coordinates

In the study of elementary linear algebra, unwary novices are often inclined to think of a vector as an ordered list of real numbers; to them, linear algebra is then conceived of as the study of multiplying matrices with column vectors. But this is a horribly impoverished perspective; we can do so much better for ourselves with a bit of abstraction and generality.

You can think of arrows or lists of numbers if you want or if you must, but the true, ultimate meaning of a vector space is ... well, anything that satisfies the vector space axioms. If you have things that you can "add" (meaning that we have an associative, commutative binary operation and we have inverse elements and an identity element with respect to this operation), and you can "multiply" these things by other things that come from a field (the "vectors" in the space and the "scalars" from the field play nicely together in a way that is distributive &c.), then these things you that you have are a vector space over that field, and any of the theorems that we prove about vector spaces in general apply in full force to the things you have, which don't have to be lists of real numbers; they could be matrices or polynomials or functions or whatever.

Okay, so it turns out that n-dimensional vector spaces are isomorphic to lists of n numbers (elements of the appropriate field), but that's not part of our fundamental notion of vectorness; it's something we can prove

Continue reading

Iff as Conditional Chain

I'm not sure I like how when we want to prove that two statements are equivalent, we typically say "A if and only if B" and we prove it by separately proving "both directions" AB and BA, but when we want to prove three or more statements are equivalent, we typically say "The following are equivalent" and prove a "circular chain" of conditionals (1) ⇒ (2) ⇒ [...] ⇒ (n) ⇒ (1), as if these were different proof strategies. Because really, the "both directions" business is just a special case of the chain-of-conditionals idea: (1) ⇒ (2) ⇒ (1). At the very least, one of my books ought to have mentioned this.

Eigencritters

Say we have a linear transformation A and some nonzero vector v, and suppose that Av = λv for some scalar λ. This is a very special situation; we say that λ is an eigenvalue of A corresponding to the eigenvector v.

How can we find eigenvalues? Here's one criterion. If Av = λv for some unknown λ, we at least know that Av – λv equals the zero vector, which implies that the linear transformation (A – λI) maps v to zero. If (A – λI) maps v to zero, then it must have a nontrivial kernel, which is to say that it can't be invertible, and this happens exactly when its determinant is zero, because the determinant measures how the linear transformation distorts (signed) areas (volumes, 4-hypervolumes, &c.), so if the determinant is zero, it means you've lost a dimension; the space has been smashed infinitely thin. But det(A – λI) is a polynomial in λ, and so the roots of that polynomial are exactly the eigenvalues of A.

Two Views of the Monotone Sequence Theorem

If a sequence of real numbers (an) is bounded and monotone (and I'm actually going to say nondecreasing, without loss of generality), then it converges. I'm going to tell you why and I'm going to tell you twice.

If our sequence is bounded, the completeness of the reals ensures that it has a least upper bound, which we'll call, I don't know, B, but there have to be sequence elements arbitrarily close to (but not greater than) B, because if there weren't, then B couldn't be a least upper bound. So for whatever arbitrarily small ε, there's an N such that aN > B – ε, which implies that |aNB| < ε, but if the sequence is nondecreasing, we also have |anB| < ε for nN, which is what I've been trying to tell you—

twice; suppose by way of contraposition that our sequence is not convergent. Then there exists an ε such that for all N, there exist m and n greater or equal to N, such that |aman| is greater or equal to ε. Suppose it's monotone, without loss of generality nondecreasing; that implies that for all N, we can find n > mN such that anam ≥ ε. Now suppose our sequence is bounded above by some bound B. However, we can actually describe an algorithm to find sequence points greater than B, thus showing that this alleged bound is really not a bound at all. Start at a1. We can find points later in the sequence that are separated from each other by at least ε, but if we do this ⌈(Ba1)/ε⌉ times, then we'll have found a sequence point greater than the alleged bound.

Subscripting as Function Composition

Dear reader, don't laugh: I had thought I already understood subsequences, but then it turned out that I was mistaken. I should have noticed the vague, unverbalized discomfort I felt about the subscripted-subscript notation, (ank). But really it shouldn't be confusing at all: as Bernd S. W. Schröder points out in his Mathematical Analysis: A Concise Introduction, it's just a function composition. If it helps (it helped me), say that (an) is mere syntactic sugar for a(n): ℕ → ℝ, a function from the naturals to the reals. And (ank) is just the composition a(n(k)), with n(k): ℕ → ℕ being a strictly increasing function from the naturals to the naturals.

Bounded but Not Totally Bounded, Redux

Theorem. An open set in real sequence space under the ℓ norm is not totally bounded.

Proof. Consider an open set U containing a point p. Suppose by way of contradiction that U is totally bounded. Then for every ε > 0, there exists a finite ε-net for U. Fix ε, and let m be the number of points in our ε-net, which net we'll denote {Si}i∈{1, ..., m}. We're going to construct a very special point y, which does not live in U. For all i ∈ {1, ..., m}, we can choose the ith component yi such that the absolute value of its difference from the ith component of the ith point in the net is strictly greater than ε (that is, |yiSi,i| > ε) but also so that the absolute value of its difference from the ith component of p is less than or equal to ε (that is, |yipi| ≤ ε). Then for j > m, set yj = pj. Then |yp| ≤ ε, but that means there are points arbitrarily close to p which are not in U, which is an absurd thing to happen to a point in an open set! But that's what I've been trying to tell you this entire time.

Bounded but Not Totally Bounded

The idea of total boundedness in metric space (for every ε, you can cover the set with a finite number of ε-balls; discussed previously on An Algorithmic Lucidity) is distinct from (and in fact, stronger than) the idea of mere boundedness (there's an upper bound for the distance between any two points in the set), but to an uneducated mind, it's not immediately clear why. What would be an example of a set that's bounded but not totally bounded? Wikipedia claims that the unit ball in infinite-dimensional Banach space will do. Eric Hayashi made this more explicit for me: consider sequence space under the ℓ norm, and the "standard basis" set (1, 0, 0 ...), (0, 1, 0, 0, ...), (0, 0, 1, 0, 0, ...). The distance between any two points in this set is one, so it's bounded, but an open 1-ball around any point doesn't contain any of the other points, so no finite number of open 1-balls will do, so it's not totally bounded, which is what I've been trying to tell you this entire time.

[RETRACTED] Introducing the Fractional Arithmetic Derivative

[NOTICE: The conclusion of this post is hereby retracted because it turns out that the proposed definition of a "fractional arithmetic derivative" doesn't actually make sense. It fails to meet the basic decideratum of corresponding with an iterated arithmetic derivative. E.g., consider that 225″ = (225′)′ = ((32·52)′)′ = (2·3·52 + 32·2·5)′ = (150 + 90)′ = 240′ = (24·3·5)′ = 4·23·3·5 + 24·5 + 24·3 = 480 + 80 + 48 = 608. Whereas, under the proposed definition we would allegedly equivalently have 225(2) = (2!·30·52 + 32·2!·50) = 50 + 18 = 68. I apologize to anyone who read the original post (??) who was thereby misled. The original post follows (with the erroneous section struck through).]

Continue reading

Blades

What is a vector in Euclidean space? Some might say it's an entity characterized by possessing a magnitude and a direction. But scholars of the geometric algebra (such as Eric Chisolm and Dorst et al.) tell us that it's better to decompose the idea of direction into the two ideas of subspace attitude (our vector's quality of living in a particular line) and orientation (its quality of pointing in a particular direction in that line, and not the other). On this view, a vector is an attitudinal oriented length element. But having done this, it becomes inevitable that we should want to talk about attitudinal oriented area (volume, 4-hypervolume, &c.) elements. To this end we introduce the outer or wedge product ∧ on vectors. It is bilinear, it is anticommutative (swapping the order of arguments swaps the sign, so ab = –ba), and that's all you need to know.

Suppose we have two vectors a and b in Euclidean space and also a basis for the subspace that the vectors live in, e1 and e2, so that we can write a := a1e1 + a2e2 and b := b1e1 + b2e2. Then the claim is that the outer product ab can be said to represent a generalized vector (call it a 2-blade—and in general, when we wedge k vectors together, it's a k-blade) with a subspace attitude of the plane that our vectors live in and a magnitude equal to the area of the parallelogram spanned by them. Following Dorst et al., let's see what happens when we expand ab in terms of our basis—

Continue reading

The True Secret About Conjugate Roots and Field Automorphisms

In the study of the elementary algebra, one occasionally hears of the conjugate roots theorem, which says that if z0 is a root of a polynomial with real coefficients, then its complex conjugate is also a root. Or if you prefer, nonreal roots come in conjugate pairs. It also works in the other direction: if nonreal roots of a polynomial come in conjugate pairs, then the polynomial has real coefficients, because the purely imaginary parts cancel when you do the algebra: (x – (a + bi))(x – (abi)) = x2x(a + bi) – x(abi) + (a2 – (bi)2) = x2 – 2ax + a2 + b2.

There's also this idea that conjugation is the unique nontrivial "well-behaved" automorphism on ℂ, a map from ℂ to itself that respects addition and multiplication: the sum (respectively product) of the conjugates is the conjugate of the sum (respectively product). The complex numbers are symmetrical around the real axis in a way that they're not around the imaginary axis: while i and –i are different from each other, you can't "tell which is which" because they behave the same way. Contrast to 1 and –1, which do behave differently: if someone put either 1 or –1 in a box, but they wouldn't tell you which, but they were willing to tell you that "The number in the box squares to itself," then you could figure out that the number in the box was 1, because –1 doesn't do that.

The existence of these two ideas (the conjugate roots theorem and conjugation-as-automorphism) can't possibly be a coincidence; there must be some sense in which nonreal roots of real-coefficient polynomials come in conjugate pairs because the polynomial "can't tell" "which is which". But it would be unsatisfying to just say this much and nothing more ("Theorem: That can't possibly be a coincidence. Proof ...??"); we want to say something much more general and precise. And in fact, we can—

Continue reading

Inclusion, Exclusion

In this modern day and age, it simply cannot be doubted that it is of the very utmost importance that we find the size of the union of some sets. One might try just adding the sizes of all the sets, but that's not correct, because then one would be double-counting the elements that appear in more than one set. But it's a good start. One might then think that one could begin by adding the sizes of the sets, but then subtract the sizes of the intersections of each pair of sets, in order to correct for the double-counting. But this is also incorrect, because then what about the elements that appear in three sets and had thus initially been triple-counted?—after subtracting the pairwise intersections, these elements haven't been included in the count at all! So one realizes that one must then add the sizes of the triplewise intersections ...

And in one of the dark recesses of the human mind, untouched by outside light or sound, silent and unyielding to the invidious scrutiny of introspection and cognitive science—a conjecture is formed—

The size of the union of n sets is given by the alternating (starting from positive) sum of the sums of the sizes of all j-way intersections amongst the sets from j:=1 to n!

(N.b., the exclamation mark indicates an excited tone, not "factorial".)

Continue reading

Summing the Multinomial Coefficients

The sum of binomial coefficients \sum_{j=0}^n {n \choose j} equals 2n, because {n \choose j} is the number of ways to pick j elements from a set of size n, and 2n is the size of the powerset, the set of all subsets, of a set of size n: the sum, over all subset sizes, of the number of ways to choose subsets of a given size, is equal to the number of subsets. You can also see this using the binomial theorem itself:

2^{n} = (1 + 1)^{n} = \sum_{j=0}^{n} {n \choose j} 1^{j}1^{n-j} = \sum_{j=0}^{n} {n \choose j}

But of course there's nothing special about two; it works for multinomial coefficients just the same. The sum, over all m-tuples of subset sizes, of the number of ways to split a set of size n into subsets of sizes given by the m-tuple, is equal to the number of ways to split a set of size n into m subsets (viz., mn).

Straight Talk About Precompactness

So we have this metric space, which is this set of points along with a way of defining "distances" between them that behaves in a basically noncrazy way (points that are zero distance away from "each other" are really just the same point, the distance from one to the other is the same as the distance from the other to the one, and something about triangles).

Let's say (please, if you don't mind) that a sequence of points (xn) in our space is fundamental (or maybe Cauchy) iff (sic) for all positive ε, there's a point far enough along in the sequence so that beyond that point, the distance from one point to the next is less than ε. Let's also agree (if that's okay with you) to say that our metric space is sequentially precompact iff every sequence has a fundamental subsequence. If, furthermore, the precompact space is complete (all fundamental sequences actually converge to a point in the space, rather than leading up to an ætherial gap or missing edge), then we say it's compact. It turns out that compactness is an important property to pay attention to because it implies lots of cool stuff: like, compactness is preserved by homeomorphisms (continuously invertible continuous maps), and continuous functions with compact domains are bounded, and probably all sorts of other things that I don't know (yet). I'm saying sequentially precompact because I'm given to understand that while the convergent subsequences criterion for compactness is equivalent to this other definition (viz., "every open cover has a finite subcover") for metric spaces, the two ideas aren't the same for more general topological spaces. Just don't ask me what in the world we're going to do with a nonmetrizable space, 'cause I don't know (yet).

But anyway, as long as we're naming ideas, why not say that our metric space is totally bounded iff for every ε, there exists a finite number of open (that is, not including the boundary) balls that cover the whole space? We can call the centers of such a group of balls an ε-net. Our friend Shilov quotes his friend Liusternik as saying, "Suppose a lamp illuminating a ball of radius ε is placed at every point of a set B which is an ε-net for a set M. Then the whole set M will be illuminated." At the risk of having names for things that possibly don't actually deserve names, I'm going call each point in an ε-net a lamp. Actually Shilov, and thus likely Liusternik, is talking about closed balls of light around the lamps, not the open ones that I'm talking about. In a lot of circumstances, this could probably make all the difference in the world, but for the duration of this post, I don't think you should worry about it.

But this fear of having too many names for things is really a very serious one, because it turns out that sequential precompactness and total boundedness are the same thing: not only can you not have one without the other, but you can't even have the other without the one! Seriously, like, who even does that?!

Continue reading