Assignment #10

Zack M. Davis

17 May 2025 (late and unfinished)

Abstract

Homework submission for Prof. Schuster's "Measure and Integration" class.

$\S 4B$

1. Proposition. If $f \in \mathcal{L}^1$, then $\lim_{t\downarrow 0} \frac{1}{2t} \int_{b-t}^{b+t} |f - f_{[b-t,b+t]}| = 0$. Proof.¹

$$\lim_{t\downarrow 0} \frac{1}{2t} \int_{b-t}^{b+t} |f - f_{[b-t,b+t]}|$$

$$= \lim_{t \downarrow 0} \frac{1}{2t} \int_{b-t}^{b+t} |f - f_{[b-t,b+t]} + f(b) - f(b)| = \lim_{t \downarrow 0} \frac{1}{2t} \int_{b-t}^{b+t} |f - f(b) + f(b) - f_{[b-t,b+t]}|$$

$$\leq \lim_{t\downarrow 0} \frac{1}{2t} \int_{b-t}^{b+t} |f-f(b)| + |f(b)-f_{[b-t,b+t]}| = \lim_{t\downarrow 0} \frac{1}{2t} \int_{b-t}^{b+t} |f-f(b)| + \lim_{t\downarrow 0} \frac{1}{2t} \int_{b-t}^{b+t} |f(b)-\frac{1}{2t} \int_{[b-t,b+t]}^{b+t} |f(b)-\frac{1}{2t} \int_{b-t}^{b+t} |f(b)-\frac{1}$$

The first term is zero by Lebesgue's differentiation theorem (first version). The second term is also zero because $\lim_{t\downarrow 0} \frac{1}{2t} \int_{[b-t,b+t]} f = f(b)$.

3. Proposition. If $f^2 \in \mathcal{L}^1$, then $\lim_{t\downarrow 0} \frac{1}{2t} \int_{b-t}^{b+t} |f - f(b)|^2 = 0$ Proof.

$$\lim_{t\downarrow 0} \frac{1}{2t} \int_{b-t}^{b+t} |f - f(b)|^2 = \lim_{t\downarrow 0} \frac{1}{2t} \int_{b-t}^{b+t} \left(f - f(b)\right)^2 = \lim_{t\downarrow 0} \frac{1}{2t} \int_{b-t}^{b+t} f^2 - 2ff(b) + f(b)^2$$

- ... (UNFINISHED, with regrets)
 - 4. (NOT DONE, with regrets)
 - 5. (NOT DONE, with regrets)
 - **6.** Proposition. If $h \in \mathcal{L}^1$ and for all s, $\int_{-\infty}^s h = 0$, then for almost every s, h(s) = 0.

Proof. Let $g(s) := \int_{-\infty}^{s} h$. By the second version of Lebesgue's differentiation theorem, g'(s) = h(s) for almost every s. But g(s) = 0, so g'(s) = 0 too, so h(s) is 0 for almost every s.

$\S6C$

3. Proposition. $f((a_j)_{j=1}^n) := \sum_j |a_j|^{1/2}$ is not a norm. Proof. We know that homogeneity will fail; we must confirm this.

The first obvious thing to try is an arbitrary example: consider $\vec{a} := \begin{bmatrix} 4 \\ 9 \end{bmatrix}$. Then $f(\vec{a}) = 2 + 3 = 5$, but $(2\vec{a}) = \sqrt{8} + \sqrt{18} = 2\sqrt{2} + 3\sqrt{2} = 5\sqrt{2}$, and $f(2) = \sqrt{2}$... interestingly, homogeneity would be satisfied here if the

 $f(2\vec{a}) = \sqrt{8} + \sqrt{18} = 2\sqrt{2} + 3\sqrt{2} = 5\sqrt{2}$, and $f(2) = \sqrt{2}$... interestingly, homogeneity would be satisfied here if the axiom were the intuitively appealing $\|\alpha g\| = \|\alpha\| \|g\|$ (treating a scalar as a 1-vector): $f(2\vec{a}) = 5\sqrt{2} = f(2)f(\vec{a})$. But actually, the homogeneity axiom is $\|\alpha g\| = |\alpha| \|g\|$ (with an absolute value on the scalar on the right):

¹Thanks to Prof. Schuster for discussion at office hours on 13 May.

$$f(2\vec{a}) = 5\sqrt{2} \neq 2 \cdot 5 = 2f(\vec{a}).$$

Proposition. $f((a_j)_{j=1}^n) := \left(\sum_j |a_j|^{1/2}\right)^2$ is not a norm.

Proof. The triangle inequality will fail; we confirm this with a counterexample: $f(2,2,2) = (3\sqrt{2})^2 = 18$ but $f(0,1,1) + f(1,0,1) + f(1,1,0) = 3 \cdot (2 \cdot 1)^2 = 12$.

6. Proposition. Bounded functions from X to \mathbb{F} with $||f|| := \sup_X f$ is a Banach space.

Proof. (Positive-definiteness.) If f = 0, then $||f|| = \sup_X |f| = 0$. But also, if $||f|| = \sup_X |f| = 0$, then we must have f = 0, because if not, then the value |f| takes on any point $x \in X$ where $f(x) \neq 0$ would rule out 0 as an upper bound of |f|.

(Homogeneity.) $\|\alpha f\| = \sup_X |\alpha f| = |\alpha| \sup_X |f|$.

(Triangle inequality.) $||f+g|| = \sup_X |f+g|$. Then we can leverage the triangle inequality in \mathbb{F} : for all x, $|f(x)+g(x)| \leq |f(x)|+|g(x)|$, so $\sup_X |f(x)+g(x)| \leq \sup_X |f(x)|+|g(x)| \leq \sup_X |f(x)|+|g(x)| \leq \sup_X |f(x)|+|g(x)|$.

(Completeness.) A Cauchy sequence $\{f_j\}$ is such that for all ε , there exists an N, such that if $m, n \ge N$, $||f_m - f_n|| < \varepsilon$. But the uniform norm implies that if $||f_m - f_n|| < \varepsilon$, then $\sup_x |f_m(x) - f_n(x)| < \varepsilon$... (UNFINISHED, with regrets)

7. Proposition. ℓ_1 with the norm $\|(a_k)_{k=1}^{\infty}\| = \sup_{k \in \mathbb{N}^+} |a_k|$ is not a Banach space.

Proof. Let the sequence A_j consist of j 1s followed by infinitely many 0s. Then $\{A_j\}_{j=1}^{\infty}$ converges in ℓ_1 with the sup norm, because for any j, $||A_j|| = 1$, so for any m and $n ||A_m - A_n|| = 0$. But $\lim_{j \to \infty} A_j$ is the all-ones sequence, which is not in ℓ_1 .